
Matlab BGL v2.1
David Gleich

April 5, 2007

Abstract and Synopsis

MatlabBGL adds a wide range for graph algorithms to Matlab. The graph algorithms come

from the Boost Graph Library1. The following code segment brie
y demonstrates some of

the calls and algorithms in MatlabBGL.

>> [d ft dt pred] = dfs(A)

>> [d dt pred] = bfs(A);

>> [d pred] = dijkstra_sp(A,u);

>> [d pred] = bellman_ford_sp(A,u);

>> [d pred] = dag_sp(A,u);

>> D = johnson_all_sp(A);

>> D = floyd_warshall_all_sp(A);

>> T = kruskal_mst(A);

>> T = prim_mst(A);

>> cc = components(A)

>> [a C] = biconnected_components(A);

>> [flow cut R F] = max_flow(A,u,v);

>> print_func = @(str) @(u) fprintf('called %s(%s)\n', str, char(labels(u)));

>> breadth_first_search(A,1,struct('examine_vertex',print_func('examine_vertex')));

>> [d pred rank] = astar_search(A,u,heuristic_func);

1http://www.boost.org/doc/graph

1

Contents

1 Installation 3

2 Motivation and Implementation 5

2.1 Graphs in Matlab . 5

2.2 Implementation details . 8

3 Examples 8

3.1 Breadth �rst search . 9

3.2 Depth �rst search . 10

3.3 Max-
ox min-cut . 11

3.4 New algorithms . 12

4 In-place Modi�cation/Pass by Reference Library 15

5 Visitors 17

5.1 Overview . 18

5.2 Speci�cs . 20

5.3 Examples . 22

6 Features not implemented 29

7 Reference 30

7.1 Sample Graphs . 30

7.2 Functions . 31

2

1 Installation

We are distributing the library as a set of precompiled mex �les for Windows and Linux along

with the source code for the libraries. This combination will work for all people, although it

may take a bit of e�ort.

If all goes well, installing the library is as easy as:

1. Unzip the �le matlab_bgl.zip. For the sake of example, let's assume you unzipped it

into the same folder as I do: \/home/dgleich/matlab/" on Linux and \C:\Documents

and Settings\dgleich\My Documents\matlab\" on Windows.

2. In Matlab, add either the Linux path \/home/dgleich/matlab/matlab bgl/" or the Win-

dows path \C:\Documents and Settings\dgleich\My Documents\matlab\" to the path

(but replacing those directories with the ones where you actually unzipped matlab_

bgl.zip).

To test the installation, try running the following script.

% add matlab_bgl to the path

% e.g. addpath('/home/dgleich/matlab/matlab_bgl');

>> clustering_coefficients(sparse(ones(5)))

ans =

1

1

1

1

1

Building the library

Note: You should not need to complete the following steps!

In general, the precompiled versions should work. If they do not and you would like to try

compiling the mex �les from source, this section explains the process. On Windows, you

must use a Microsoft Visual Studio compiler. The free Visual Studio 2003 Compiler Toolkit2

su�ces for this purpose. On Linux, any recent version of gcc should work. All the precompiled

�les are compiled with gcc-3.4 under Linux and the Microsoft Visual Studio 2003 compiler

on 32-bit Windows and Microsoft Visual Studio 2005 x64 cross compiler for 64-bit Windows.

To compile the .lib or .a �les, �rst determine which compile script you should use.

2http://msdn.microsoft.com/visualc/vctoolkit2003/

3

System Matlab Script

32-bit Windows All compile-win32.bat

64-bit Windows Matlab 7.3 - Current compile-win64.bat

32-bit Linux Matlab 7.0 - Current compile-linux-32.sh

64-bit Linux Matlab 7.0 - Matlab 7.2 compile-linux-64.sh

64-bit Linux Matlab 7.3 - Current compile-linux-64-large.sh

Mac OS X (PPC) Matlab 7.0 - Current compile-macosx-ppc-32.sh

Mac OS X (Intel) Matlab 7.4 - Current compile-macosx-intel-32.sh

Next, you need to download and unzip version 1.33.1 of the Boost Graph Library. Goto

http://www.boost.org to download this code. Update the script �le for your platform with

the correct path so that the BOOSTDIR variable gives the correct location. Check all the paths

to the various tools on Windows to make sure they correspond to your installation. Finally,

run the script �le from the libmbgl directory. For example, on 32-bit Windows

E:\dev\matlab\download\matlab_bgl-2.1\libmbgl>compile-win32.bat

Setting environment for using Microsoft Visual Studio 2005 x86 tools.

Setting environment for using Microsoft Visual C++ 2003 Toolkit.

(If you have another version of Visual Studio or Visual C++ installed and wish

to use its tools from the command line, run vcvars32.bat for that version.)

Thank you for choosing the Visual C++ Toolkit 2003! Get started quickly by

building the code samples included in the "Samples" directory. Each sample

includes a short whitepaper discussing the Visual C++ features, and a batch

file for building the code.

Type "cl /?" for brief documentation on compiler options.

Visit http://msdn.microsoft.com/visualc/using/documentation/default.aspx for

complete compiler documentation.

E:\dev\matlab\download\MATLAB~1.1\libmbgl>cl -c -nologo -I"." -I"e:\dev\lib\boos

t_1_33_1" /Fo"Release\\" /EHsc /D "NDEBUG" /O2 /ML components.cc

components.cc

E:\dev\matlab\download\MATLAB~1.1\libmbgl>cl -c -nologo -I"." -I"e:\dev\lib\boos

t_1_33_1" /Fo"Release\\" /EHsc /D "NDEBUG" /O2 /ML max_flow.cc

max_flow.cc

...

On 64-bit Linux,

dgleich@icme-112-dgleich:matlab_bgl/libmbgl$ chmod u+x compile-linux-64-large.sh

dgleich@icme-112-dgleich:matlab_bgl/libmbgl$./compile-linux-64-large.sh

To compile the library from the .lib and .a �les,

4

>> cd /home/dgleich/matlab/ % use your directory here instead of mine!

>> cd matlab_bgl/

>> cd private

>> compile

>> cd ..

>> cd @ipdouble

>> mex subsasgn.c

>> cd ..

>> cd @ipint32

>> mex subsasgn.c

>> cd ..

If you cannot compile the library and the example does not work, please send email to

mithandor@gmail.com with as much output as you can.

� Try running mex-setup and selecting the gcc or Microsoft Visual Studio compiler setup

for Linux and Windows, respectively.

� For Linux, edit your mexopts.sh �le and remove the -ansi
ag from the CFLAGS and

CXXFLAGS for your platform.

� For some versions of Matlab, you may want to change the CC and CXX to gcc-3.4 or

gcc-4.0.

2 Motivation and Implementation

The Boost Graph Library3 is a powerful graph analysis toolkit. It contains e�cient algorithms

implemented as generic C++ template speci�cations. In the MatlabBGL library, we have

wrapped these algorithms with mex functions which are callable from Matlab. The goal of

the library was to introduce as little new material in Matlab as possible. As the next section

explains, MatlabBGL uses the Matlab sparse matrix type as the graph type directly.

The idea behind the MatlabBGL library is to provide a rich set of graph-theoretic routines as

e�cient Matlab functions.

2.1 Graphs in Matlab

Matlab has a built in graph type: the sparse matrix. The goal of the MatlabBGL library

is to use the Matlab sparse matrix as a graph type. To be slightly more concrete, we use

a sparse matrix in Matlab to represent the adjacency matrix of two graphs from the Boost

Graph library review of graph theory.

3http://www.boost.org/libs/graph/doc/

5

Figure 1: A directed graph.

For the graph in Figure 1, the adjacency matrix is

0 0 0 0 0 1

0 0 0 1 2 0

0 0 0 0 0 0

0 0 0 1 0 1

0 0 1 0 0 0

1 0 0 0 0 0

 ;

and we labeled vertex a = 1, b = 2, v = 3, x = 4, y = 5, z = 6. In the original graph

from Figure 1, there are two edges from b to y . We have replaced both edges with a two in

the adjacency matrix. While this works for many algorithms, there are currently no ways of

implemented true multi-graphs in MatlabBGL.

Note: There are currently no multi-graphs supported in MatlabBGL.

We can construct this graph as a Matlab sparse matrix with the following set of commands.

>> A = sparse(6,6);

>> A(1,6) = 1;

>> A(6,1) = 1;

>> A(2,4) = 1;

>> A(2,5) = 2;

>> A(4,4) = 1;

>> A(4,6) = 1;

>> A(5,3) = 1;

>> labels = {'a';'b';'v';'x';'y';'z'};

Now, we can use the directed graph as a Matlab sparse matrix and as a MatlabBGL graph.

As we will see, we can treat any square sparse matrix as a MatlabBGL graphs.

6

Figure 2: An undirected graph.

MatlabBGL requires that undirected graphs have symmetric adjacency. When constructing

a graph, this means that you must specify each edge twice. The following Matlab session

constructs the graph in Figure 2.

>> A = sparse(6,6);

>> A(1,6) = 1;

>> A(6,1) = 1;

>> A(2,4) = 1;

>> A(4,2) = 1;

>> A(2,5) = 1;

>> A(5,2) = 1;

>> A(3,4) = 1;

>> A(4,3) = 1;

>> A(3,5) = 1;

>> A(5,3) = 1;

>> labels = {'a';'b';'v';'x';'y';'z'};

An easier way of constructed the graph from Figure 2 is to take advantage of some of

Matlab's sparse matrix routines. We can use one command to add a reverse edge for each

edge listed in a sparse matrix by executing

>> A = max(A,A');

Using this command, we can build the undirected graph using the commands:

>> A = sparse(6,6);

>> A(1,6) = 1;

>> A(2,4) = 1;

>> A(5,2) = 1;

>> A(4,3) = 1;

>> A(3,5) = 1;

>> A = max(A,A');

7

In general, any square sparse matrix in Matlab is a MatlabBGL graph; the non-zeros of the

matrix de�ne the edges. If the sparse matrix is symmetric, then the graph is undirected.

Note: Any square sparse matrix is a MatlabBGL graph.

2.2 Implementation details

In this section, we will address some fairly technical details of the implementation. Matlab

implements sparse matrices as a set of compressed column arrays. Most adjacency matrix

representations (and the one used in MatlabBGL) use the rows of the matrix to specify the

edges from a particular vertex. That is, A(i ; j) = 1 indices there is an edge between vertex i

and vertex j .

Unfortunately, this means that in the Matlab compressed column storage format, we do not

have e�cient access to the elements of each row of the matrix (i.e. the adjacent vertices).

The Boost graph algorithms require access to the adjacent vertices. So, every time we call a

MatlabBGL function we transpose the sparse matrix, unless the function requires a symmetric

input.

Some algorithms only use the non-zero structure of the sparse matrix. Other algorithms use

the values of the non-zeros as the weights of the edges. In general, things work the way you

expect them to using a sparse adjacency matrix to represent the graph; we have documented

any serious deviations from the expected behavior.

Transposing the matrix can be somewhat expensive, so we provide an option to eliminate

the transpose if the user knows better. Thus, for the most e�cient MatlabBGL runtimes,

construct the transpose of the adjacency matrix and run the MatlabBGL routines with the

extra option

>> bfs(A,u,struct('istrans',1));

Currently, the max_flow function performs additional input manipulation and does not have

this optimization.

3 Examples

We'll show four examples of how to use the Matlab BGL library. The �rst three examples

come from the Boost Graph Library samples. The last example shows how to write a new

algorithm using MatlabBGL.

8

3.1 Breadth �rst search

In the following example, we perform a breadth �rst search on an example graph from Boost.

This example is implemented in the examples/bfs example.m �le.

Figure 3: The breadth �rst search example graph from the Boost Graph Library. The

concentric regions show the order in which breadth �rst search will visit the vertices.

We will load the graph from Figure 3 and compute the breadth �rst search (BFS).

>> load graphs\bfs_example.mat

>> [d dt pred] = bfs(A,2);

>> [ignore order] = sort(dt);

>> labels(order)

ans =

's'

'r'

'w'

'v'

't'

'x'

'u'

'y'

The �rst command loads the graph from the stored representation in Matlab. As we've seen,

we present the graph as a sparse adjacency matrix. We can look at the full adjacency matrix

using the full command.

>> full(A)

ans =

0 1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

9

The second command runs the MatlabBGL bfs command starting from vertex 2. Looking at

the label �le, we can see that vertex 2 was really s in the original graph. The bfs command

returns three vectors: d is a vector of the distance to each other vertex from s; dt is the

discover time of each vertex, the time when the BFS �rst reached that vertex; and pred is

the predecessor array encoded as a Matlab tree. In fact, we can view the predecessor array

using the treeplot command.

>> treeplot(pred)

The third line of the example sorts the vertices by their discover time and saves the permu-

tation of the indices. The permutation tells us how to permute the labels array to view the

vertex labels in the discover order. The �nal line actually prints the labels in their discover

order. Comparing with the original �gure, we can see that the vertices were discovered in the

correct BFS order.

3.2 Depth �rst search

In this example, we will compute a depth �rst search (DFS) of the graph in Figure 4. This

example is implemented in the examples/dfs example.m �le.

We �rst load the graph and then call the MatlabBGL dfs command.

>> load graphs/dfs_example.mat

>> [d dt ft pred] = dfs(A,1,struct('full',1));

>> [ignore order] = sort(dt);

>> labels(order)

ans =

'a'

'b'

'e'

'c'

10

Figure 4: The depth �rst search example graph from the Boost Graph Library.

'f'

'd'

'g'

'h'

'i'

The dfs command is similar to the bfs command. However, the dfs routine provides the ft

vector which indicates the �nish time for each vertex as well. The other commands in this

script are explained in the �rst example.

The graph in Figure 4 is disconnected. We can use the dfs command to �nd all the vertices

connected to a source vertex.

>> load graphs/dfs_example.mat

>> d = dfs(A,1);

>> labels(d < 0)

ans =

'g'

'h'

'i'

This result indicates that nodes g, h, and i are in a separate component from vertex a.

3.3 Max-
ox min-cut

The Boost Graph Library provides an implementation of Goldberg's push-relabel maximum

ow algorithm. In this example, we use the max_flow routine to �nd the maximum
ow of

the graph from Figure 5. This example is implemented in the examples/max flow example.m

�le.

>> load graphs/max_flow_example.mat

>> max_flow(A,1,8)

ans =

11

Figure 5: The max-
ow min-cut example graph from the Boost Graph Library.

4

>> [flow cut R F] = max_flow(A,1,8);

>> full(R)

ans =

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 3 0 0 0 0

0 5 0 0 0 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 5 1

0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 0

The script presents two results from the max_flow routine. The �rst call computes the

maximum
ow from A to H. The second call prints the residual
ow graph R. In comparison

with Figure 5, the residual shows the unused capacity on each edge. On the edge from A to

B, there is only one unit of unused
ow, so R(1; 2) = 1.

3.4 New algorithms

In this section, we will implement a new algorithm using the core set of routines provided by

the MatlabBGL library.

Multiway Cut The Matlab code for this example is in the �le examples/multiway example.m.

Given an undirected graph G = (V; E) with weighted edges w . The multiway cut problem is

to �nd a minimum cost set of edges, C, to remove that will disconnect a subset of vertices

S from each other. That is, after we remove the edges C from G, there is no path from any

vertex s 2 S to any other vertex in S.

This problem is NP-complete, but we can �nd a 2-approximation by solving jSj separate

12

max-
ow subproblems.4 Label the vertices in S, s1; s2; : : : ; sk , so k = jSj. In each max-
ow

subproblem, we pick vertex si 2 S and add a new vertex t. For each sj ; j 6= i , we add a

directed edge of in�nite capacity from sj to t. We solve the max-
ow problem and add the

set of edges in the induced min-cut to the set C.

The MatlabBGL implementation of this algorithm follows.

function C = approx_multiway_cut(A,vs)

function C = approx_multiway_cut(A,vs)

% APPROX_MULTIWAY_CUT Solve a 2-approximation to the multi-way cut problem

%

% C = approx_multiway_cut(A,vs)

%

% Outputs C, the set of edges cut in a 2-approximation to the multiway cut

% problem. The multiway-cut problem is to find a minimum cost set of edges

% to disconnect all the vertices in vs from each other.

%

% The non-zero values contain the weight of each edge.

%

% The input A must be a symmetric graph.

if (~isequal(A,A'))

error('approx_multiway_cut:invalidParameter',...

'the matrix must be symmetric.');

end;

if (min(min(A)) < 0)

error('approx_multiway_cut:invalidParameter',...

'the matrix cannot contain negative weights.');

end;

n = size(A,1);

% this should be larger than any conceivable flow...

int_infinity = sum(sum(A))+2*sum(sum(A(vs,:)))+1;

% initial the cut to nothing.

C = sparse(n,n);

% Get A as an edge list...

[i j v] = find(A);

for (kk=1:length(vs))

v = vs(kk);

others = setdiff(vs,v);

% Each flow problem add a fake sink as the n+1 vertex

Aflow = A;

4Approximation Algorithms. Vijay V. Vazirani.

13

Aflow(others,n+1) = int_infinity*ones(length(others),1);

Aflow(n+1,:) = sparse(n+1,1);

% solve the max-flow problem

[flow ci] = max_flow(Aflow,v,n+1);

% remove the last (fake) entry from the cut.

ci = ci(1:end-1);

% construct a value over the edges that is 0 except on the cut, we know

% all values are positive, so just take the absolute value

vc = abs(v.*(ci(i)-ci(j)))./2;

% add the set of edges to the cut by constructing a sparse matrix with

% only the cut edges.

C = C+ sparse(i, j, vc, n,n);

end;

We can use this new algorithm to �nd a set of roads to remove to disconnect a set of

nodes. The following example loads the road network for Minnesota and chooses a set of

125 vertices, calls the approx_multiway_cut command above, and then draws the cut using

the gplot command.

load graphs/minnesota.mat

n = size(A,1);

k1 = 75;

k2 = 50;

start1 = 1;

start2 = 800;

vs1 = start1:start1+k1;

vs2 = start2:start2+k2;

vs = [vs1 vs2];

C = approx_multiway_cut(A,vs);

gplot(triu(A),xy,':');

hold on;

gplot(triu(C),xy,'r-');

plot(xy(vs,1),xy(vs,2),'.');

hold off;

set(gca,'XTick',[]);

set(gca,'YTick',[]);

When drawing the graphs, we use the triu command to only select the upper triangular

portion of the adjacency matrix. Otherwise, Matlab will draw both edges, instead of only one

edge. The �gure produced by this program follows.

14

4 In-place Modi�cation/Pass by Reference Library

To facilitate the visitors implemented in the next section, MatlabBGL includes a pass-by-

reference library. This section describes that library and why it is required for MatlabBGL. In

Matlab, the standard variable passing convention is pass-by-value. That is, each time Matlab

calls a function, it copies all of the function arguments so the caller and the callee have

separate copies.5 One serious side e�ect is that if a function makes a single change to a

large matrix, Matlab must copy the entire matrix. Further, if we wish to return the change

to the caller, Matlab must copy the changed matrix back! For a large matrix, this can result

in serious overhead as in the following example.

For expository purposes, suppose we have a function that simply increments the �rst entry

in a Matlab matrix.

function a=incr_first(a)

% INCR_FIRST Increment the first entry in a matrix.

a(1) = a(1) + 1;

Now, we go a little wild and use the code in the following script inplace example1.m.

n = 1000000;

ntrials = 1000;

a = ones(n,1);

tic;

for ii=1:ntrials

a = incr_first(a);

end

fprintf('Standard Matlab: %f seconds\n', toc);

5In fact, Matlab optimizes this procedure and only makes a copy if the callee changes the argument. This

technique is often called \copy-on-write."

15

The script produces the following output.

>> inplace_example1

Standard Matlab: 12.375000 seconds

Twelve seconds? To simply increment the �rst entry in an array 1000 times? This result is

slightly ine�cient.

The Inplace/pass-by-reference library remedies this ine�ciency. The Inplace library allows us

to makes changes to function arguments in-place. That is, the function arguments are not

copied and the caller and callee share the same variable and memory. This style of argument

passing is often called \pass-by-reference."

We designed the Inplace library to be as close to Matlab syntax as possible. To \�x" the

example, we need only make a tiny change.

a = ipdouble(ones(n,1));

After this change (and changing the output label), the script produces the output.

>> inplace_example1

Inplace Calls: 0.062000 seconds

Much better!

To be slightly more concrete, the Inplace library provides two classes ipdouble and ipint32

to create pass-by-reference versions of a double and int32 matrices and vectors. To sum-

marize, the following commands all work for ipdouble and ipint32 vectors as expected.

>> ipd = ipdouble(rand(5));

>> ipd % display works

>> size(ipd) % size works

>> ipd(1,:) % subscripting works

>> ipd(1,3:end) % subscripting with end works

>> ipd(:) = rand(5) % assignment works

>> ipd(1,3:end) = ones(1,3) % partial assignment works

>> ipd(:,1) = pi*ones(5,1) % partial assignment works

The following commands do not work quite as you would expect; however there are alterna-

tives available.

>> ipd = ipdouble(ones(5)) % create a 5x5 ipdouble of ones

>> y = pi*ones(5,5); % create another vector

>> ipd2 = ipdouble(ipd); % deep copy ipd

>> ipd2 = y; % error!

Unfortunately, the Inplace library does not overload the \=" operator at the moment, so the

�nal statement does not do quite what you expect. Instead of copying the contents of y to

16

ipd2, it simply overwrites the variable ipd2 with the contents of y. Instead, you must use

the assign command.

>> assign(ipd2,y); % correct!

Also, you cannot resize Inplace objects, so the following commands do not work.

>> ipd = ipdouble(ones(5)) % create a 5x5 ipdouble of ones

>> ipd(6,6) = 1; % error!

Currently, there is no workaround for this behavior. Use ipdoubles like Fortran arrays, which

have �xed size.

Finally, there are some syntactic issues when you update an entire ipdouble or ipint32

vector.

>> ipd = ipdouble(pi*ones(5)); % create a 5x5 ipdouble of pi's

>> ipd = ipd + 1; % error!

>> ipd = double(ipd) + 1; % hidden error

>> assign(ipd,ipd(:)+1); % correct!

The �rst error results because the plus command is not implemented for the ipdouble

type. This omission may be �xed in future releases. The second \�x" succeeds but contains

a hidden error. The error is that the type of the result is a Matlab double, not an ipdouble.

Finally, using the assign command results in the correct behavior.

5 Visitors

The visitor feature of the Boost Graph Library is one of the most powerful and subtle fea-

tures. By attaching visitors to some of the algorithms, you can record or alter behavior

of the underlying algorithm. Internally, the Boost Graph Library uses visitors to imple-

ment: connected_components, strong_components, biconnected_components, prim_

minimum_spanning_tree, and dijkstra_shortest_paths. Using an appropriate visitor

and data structure, all these algorithms could be implemented natively in Matlab just like the

Boost versions.6

The MatlabBGL library implements visitors using function handles.

>> load graphs/bfs_example.mat

>> ev_func = @(u) fprintf('called examine_vertex(%s)\n', char(labels(u)));

>> bfs_visitor = struct();

>> bfs_visitor.examine_vertex = ev_func;

>> breadth_first_search(A,1,bfs_visitor);

6Of course, actually implemented them natively in Matlab would negate the performance bene�t of using

the Boost Graph Library.

17

called examine_vertex(r)

called examine_vertex(s)

called examine_vertex(v)

called examine_vertex(w)

called examine_vertex(t)

called examine_vertex(x)

called examine_vertex(u)

called examine_vertex(y)

In the following sections, we will describe how MatlabBGL implements visitors with a high

level overview and a few examples.

5.1 Overview

In the Boost graph library and in MatlabBGL, the following algorithms support visitors:

� breadth_first_search

� depth_first_search

� dijkstra_shortest_paths

� bellman_ford_shortest_paths

� astar_search.

All visitors implemented in Boost are implemented in MatlabBGL. For the details on the

visitors, see the Boost graph library documentation. Whereas the BGL uses classes and

structures to implement visitors, MatlabBGL uses function handles and structures.

To demonstrate the relationship, we will implemente the bacon_number_recorder visitor

from the Boost graph library examples.7 The algorithm used to determine Bacon numbers

is breadth �rst search. In the breadth �rst search algorithm, a tree-edge indicates when the

algorithm �nds a new shortest path between the start node and another (previously) unknown

node. In terms of Bacon numbers, these events indicate when we �nd another actor and give

us that the Bacon number of the new actor is one greater than the Bacon number of the

previous actor.

template <typename DistanceMap>

class bacon_number_recorder : public default_bfs_visitor

{

public:

bacon_number_recorder(DistanceMap dist) : d(dist) { }

7http://www.boost.org/libs/graph/doc/kevin_bacon.html

18

template <typename Edge, typename Graph>

void tree_edge(Edge e, const Graph& g) const

{

typename graph_traits<Graph>::vertex_descriptor

u = source(e, g), v = target(e, g);

d[v] = d[u] + 1;

}

private:

DistanceMap d;

};

// Convenience function

template <typename DistanceMap>

bacon_number_recorder<DistanceMap>

record_bacon_number(DistanceMap d)

{

return bacon_number_recorder<DistanceMap>(d);

}

To use the visitor, we need to allocate storage and call breadth �rst search starting from

Kevin Bacon.

// allocate storage

std::vector<int> bacon_number(num_vertices(g));

// call bfs

Vertex src = actors["Kevin Bacon"];

bacon_number[src] = 0;

breadth_first_search(g, src, visitor(record_bacon_number(&bacon_number[0])));

The following code implements the same visitor pattern in MatlabBGL and uses the Inplace

library described in the previous section.

function bn = bacon_numbers(A,u)

% BACON_NUMBERS Compute the Bacon numbers for a graph.

%

% bn = bacon_numbers(A,u) computes the Bacon numbers for all nodes in the

% graph assuming that Kevin Bacon is node u.

% allocate storage for the bacon numbers

% the ipdouble call allocates storage that can be modified in place.

bn_inplace = ipdouble(zeros(num_vertices(A),1));

% implement a nested function that can refer to variables we declare. In

% this case, we refer to the bn_inplace variable.

function tree_edge(ei,u,v)

bn_inplace(v) = bn_inplace(u)+1;

end

19

% setup the bacon_recorder visitor

bacon_recorder = struct();

bacon_recorder.tree_edge = @tree_edge;

% call breadth_first_search

breadth_first_search(A,u,bacon_recorder);

% convert the inplace storage back to standard Matlab storage to return.

bn = double(bn_inplace);

% the end line is required with nested functions to terminate the file

end

The code for the MatlabBGL bacon_number function is in the examples/ subdirectory. In-

stead of declaring a class with a member variable d for the bacon_number_recorder, the

MatlabBGL code uses a nested function along with an ipdouble variable from the Inplace

library to accomplish the same behavior.

5.2 Speci�cs

The Boost graph library has two types of visitor functions vertex visitors and edge visitors.

A common vertex visitor is the examine_vertex function. For the BFSVisitor concept, the

Boost graph library de�nes the following prototype for that visitor.

void visitor::examine_vertex(Vertex u, Graph& g)

The corresponding MatlabBGL function takes only one argument, the vertex index.

visitor.examine_vertex = @(u) fprintf('called examine_vertex(%i)!\n', u);

In MatlabBGL, the vertex visitors follow this same pattern, the only argument is the index

of the vertex.

The second type of visitor function, the edge visitors have more di�erences with Boost. The

Boost edge visitor functions provide the Edge datatype directly. Because MatlabBGL does

not de�ne an Edge datatype like the Boost graph library, this call makes no sense. Instead,

the MatlabBGL edge visitor functions provide the transposed edge index, the source of the

edge, and the target of the edge.

visitor.examine_edge = @(ei,u,v) ...

fprintf('called examine_edge(%i,%i,%i)!\n', ei, u, v);

First, the edge index is less useful than it may seem initially. Instead of the edge index into

the original graph, the edge index is in the transposed graph that MatlabBGL is using for the

computation. (See section ??, you get the transposed edge index unless you tell MatlabBGL

20

not to transpose the graph.)) There is more about this issue in the next paragraph. The

second and third arguments, u and v are the source and target of the edge, respectively.

These two variables are quite useful and let you know which vertices the edge touches. In

the most general terms, the edge is a directed edge from vertex u to vertex v .

In fact, there are two issues with the edge index. First, the edge index comes from the

transposed graph. The second issue is that for an undirected graph, each edge has two

indices (one for the forward edge, and one for the reverse edge). To see a full discussion of

both of these issues, see the edge index example in section 5.3.

Stopping the Algorithm At any point, if a visitor function returns a zero value, the al-

gorithm halts. Often, this behavior may be desirable. Consider the following example with

astar_search.

load graphs/bgl_cities.mat

goal = 11; % Binghamton

start = 9; % Buffalo

% Use the euclidean distance to the goal as the heuristic

h = @(u) norm(xy(u,:) - xy(goal,:));

% Setup a routine to stop when we find the goal

ev = @(u) (u ~= goal);

[d pred f] = astar_search(A, start, h, ...

struct('visitor', struct('examine_vertex', ev)));

The examine_vertex function returns 0 when the vertex is a targeted vertex. In this example,

we want to �nd the shortest path between Binghamton and Bu�alo. Once we �nd a shortest

path to Bu�alo, we can halt the algorithm!

In summary,

� MatlabBGL visitor function have the same names as the Boost graph library visitor

functions;

� vertex visitor functions provide only the index of the vertex, e.g. examine_vertex(u);

� edge visitor functions provide the transposed edge_index and the two endpoints of the

edge, u and v, e.g. examine_edge(ei,u,v);

� the Inplace library and nested functions are useful tools to implement visitors; and

� visitor function can halt an algorithm by returning 0.

For additional discussion of some of the implementation details, see section 5.3 and 5.3.

21

5.3 Examples

In this section, we give three examples to demonstrate how to use the visitor library. First, we

have an example that outputs messages from all events to show how an algorithm works. Sec-

ond, we have an example that demonstrates how to correctly use edge-indices in the visitors.

Finally, the breadth-�rst-search example reimplements the bfs function using MatlabBGL

visitors instead of Boost graph library visitors.

Recording algorithm behavior

In this example, we will write a simple visitor that outputs an algorithm's behavior. The

algorithm we will examine is dijkstra_sp. To examine the runtime behavior we will use a

visitor which outputs a string every time a function is called.

To begin, we load a graph.

>> load graphs/clr-25-2.mat

Next, let's check the documentation to see which functions to implement for the visitor

>> help dijkstra_sp

...

visitor is a struct with the following optional fields

vis.initialize_vertex(u)

vis.discover_vertex(u)

vis.examine_vertex(u)

vis.examine_edge(ei,u,v)

vis.edge_relaxed(ei,u,v)

vis.edge_not_relaxed(ei,u,v)

vis.finish_vertex(u)

...

The help states that dijkstra_sp allows visitors functions for initialize_vertex, discover_

vertex, examine_vertex, examine_edge, edge_relaxed, edge_not_relaxed, and finish_

vertex.

Rather than implementing 7 functions ourselves, we de�ne two helper functions. These

helper functions return functions themselves. There is one helper that returns a vertex visitor

function and one helper than returns an edge visitor function.

>> vertex_vis_print_func = @(str) @(u) ...

fprintf('%s called on %s\n', str, char(labels{u}));

>> edge_vis_print_func = @(str) @(ei,u,v) ...

fprintf('%s called on (%s,%s)\n', str, char(labels{u}), char(labels{v}));

>> ev_func = vertex_vis_print_func('examine_vertex');

>> ev_func(1)

22

examine_vertex called on s

I hope you see how these functions are useful in saving quite a bit of typing.

We are almost done. Now, we just have to setup the visitor structure to pass to the

dijkstra_sp call.

>> vis = struct();

>> vis.initialize_vertex = vertex_vis_print_func('initialize_vertex');

>> vis.discover_vertex = vertex_vis_print_func('discover_vertex');

>> vis.examine_vertex = vertex_vis_print_func('examine_vertex');

>> vis.finish_vertex = vertex_vis_print_func('finish_vertex');

>> vis.examine_edge = edge_vis_print_func('examine_edge');

>> vis.edge_relaxed = edge_vis_print_func('edge_relaxed');

>> vis.edge_not_relaxed = edge_vis_print_func('edge_not_relaxed');

With the visitor setup, there is hardly any work left.

>> dijkstra_sp(A,1,struct('visitor', vis));

discover_vertex called on s

examine_vertex called on s

examine_edge called on (s,u)

edge_relaxed called on (s,u)

discover_vertex called on u

examine_edge called on (s,x)

edge_relaxed called on (s,x)

discover_vertex called on x

finish_vertex called on s

examine_vertex called on u

examine_edge called on (u,x)

edge_not_relaxed called on (u,x)

examine_edge called on (u,v)

edge_relaxed called on (u,v)

discover_vertex called on v

finish_vertex called on u

examine_vertex called on x

examine_edge called on (x,u)

examine_edge called on (x,v)

edge_not_relaxed called on (x,v)

examine_edge called on (x,y)

edge_relaxed called on (x,y)

discover_vertex called on y

finish_vertex called on x

examine_vertex called on v

examine_edge called on (v,y)

edge_not_relaxed called on (v,y)

finish_vertex called on v

examine_vertex called on y

examine_edge called on (y,s)

examine_edge called on (y,v)

23

finish_vertex called on y

To understand the output, we �nd it helpful to have a copy of Introduction to Algorithms by

Cormen, Leiserson, and Rivest. The source for the graph is Figure 25-2 in that book and the

authors use the graph to illustrate how Dijkstra's algorithm runs. In particular, Figure 25-5

shows a sample run of Dijkstra's algorithm.

Perhaps the �rst thing to notice is that the initialize vertex visitor is never called. This results

from an error in the MatlabBGL and Boost documentation. Once it is resolved, we will

update the MatlabBGL documentation to match the Boost graph library.

The results: discover_vertex is called before examine_vertex, except for the source node

u. For the edges, examine_edge is always called before either edge_relaxed or edge_not_

relaxed. The edges that are relaxed are the shaded edges in Figure 25-5.

Finally, finish_vertex is called on a vertex after all of its edges have been examined and

possibly relaxed.

This example is implemented in the �le examples/record alg.m.

Reimplementing bfs

For this example, we will implement the bfs command using the breadth_first_search

routine along with a set of visitors. The visitors will record

1. the distance in edges from a source vertex to a destination vertex,

2. the predecessor of each vertex in the search tree, and

3. the discovery time of each vertex.

At the end, we benchmark this search against the MatlabBGL bfs function to estimate the

performance impact of the Matlab visitors.

The begin the algorithm, we have to initialize a series of vectors to store the data.

ip_d = -ones(num_vertices(A),1);

ip_dt = -ones(num_vertices(A),1);

ip_pred = zeros(1,num_vertices(A));

ip_time = ipdouble(1);

The bfs function requires that ip_d and ip_dt are �1 if a vertex is not reachable from the

starting vertex, so we initialize those arrays with �1. The ip_pred array is 0 if a vertex is

not in the BFS tree. The ip_time variable is used to keep a running index of how many

steps the algorithm takes.

24

With our arrays constructed, we can build visitor functions to update each of the arrays. We

won't go through the details of the following visitors, but they implement the time_stamper,

distance_recorder, and predecessor_recorder visitors from the BGL. These functions

are nested functions, so they refer to variables in the outer variable scope.

function time_discover_vertex(u)

ip_dt(u) = ip_time(1);

ip_time(1) = ip_time(1) + 1;

end

function distance_tree_edge(ei,u,v)

ip_d(v) = ip_d(u)+1;

end

function pred_tree_edge(ei,u,v)

ip_pred(v) = u;

end

With the visitor function, we simply construct the visitors by creating a set of structures and

using the combine_visitors function.

vis_distance = struct('tree_edge', @distance_tree_edge);

vis_time = struct('discover_vertex', @time_discover_vertex);

vis_pred = struct('tree_edge', @pred_tree_edge);

vis = combine_visitors(vis_distance, vis_time, vis_pred);

The only remaining task is to call the breadth_first_search algorithm. Prior to making

the call, we must �nish some brief initialization to properly denote the source vertex.

ip_d(u) = 0;

ip_dt(u) = ip_time(1);

breadth_first_search(A,u,vis);

After the call to breadth_first_search, the desired data remains in the ip_d, ip_dt, and

ip_pred variables. To �nish, we convert these to real double times from the ipdouble

types used in the algorithms.

The bfs_in_mbgl function is provided in the examples/ directory. We can use this im-

plementation to benchmark the performance di�erence between the Matlab based visitor

implementation and the native visitor implementation.

% from the examples subdirectory

>> load ../graphs/minnesota.mat

>> tic;

>> [d dt pred] = bfs(A,1);

>> toc;

>> tic;

25

>> [d dt pred] = bfs_in_mbgl(A,1);

>> toc;

Elapsed time is 0.000000 seconds.

Elapsed time is 2.469000 seconds.

Unfortunately, there is signi�cant overhead in calling the MatlabBGL visitors, and the Mat-

labBGL implementation is much slower on even a small graph (2642 vertices). Nevertheless,

the interactive computation environment in Matlab o�ers signi�cant speed advantages and

reduced development time.

Becoming more e�cient The previous example was needlessly ine�cient. Here, we explain

how to implement the previous example in a faster and more e�cient manner. First, the

combine_visitors function is a nice general function, but there is overhead involved in each

call to the visitor. Also, there is an alternative to using the Inplace library for the visitors

which yields a slight performance increase.

Brie
y, we de�ne the arrays without the Inplace library.

ip_d = -ones(num_vertices(A),1);

ip_dt = -ones(num_vertices(A),1);

ip_pred = zeros(1,num_vertices(A));

ip_time = 1;

Then, we de�ne a single pair of nested functions which perform all the visitor tasks.

function discover_vertex(u)

ip_dt(u) = ip_time(1);

ip_time(1) = ip_time(1) + 1;

end

function tree_edge(ei,u,v)

ip_d(v) = ip_d(u)+1;

ip_pred(v) = u;

end

Finally, we construct the visitor structure, setup the initial values for each variable, and call

breadth_first_search.

vis = struct('discover_vertex', @discover_vertex, 'tree_edge', @tree_edge);

ip_d(u) = 0;

ip_dt(u) = ip_time(1);

breadth_first_search(A,u,vis);

26

The code for the e�cient version is in the bfs_in_mbgl_efficient function is provided in

the examples/ directory. Using this version, we recompute the timings.

% from the examples subdirectory

>> load ../graphs/minnesota.mat

>> tic;

>> [d dt pred] = bfs(A,1);

>> toc;

>> tic;

>> [d dt pred] = bfs_in_mbgl_efficient(A,1);

>> toc;

Elapsed time is 0.000000 seconds.

Elapsed time is 0.469000 seconds.

These small changes have made a considerable change in the runtime of the function. While

the native code is still considerably faster, the new code is an improvement.

To reiterate, the code for this example is implemented in the bfs_in_mbgl and bfs_in_

mbgl_efficient functions in the examples/ directory.

Edge index example

This example is, perhaps, the most intricate. Here, we will delve into how to use the edge

index provided in the edge visitor functions.

To begin, let's determine the problem. Suppose we have a graph with a numeric value

associated with each edge. One example would be a weighted graph, however, this example

is intended to be fairly general. E�ectively, we will describe how to work with edge property

maps and MatlabBGL. As always, we need a graph to use.

>> load graphs/bfs_example.mat

Now we assign a random value to each edge in the graph.

>> [i,j,val] = find(A);

>> edge_rand = rand(num_edges(A),1);

Presently, we have an implicit association between edges and values. That is, each directed

edge in A has a separate value. In the next statement, we make the mapping concrete and

explicitly indicate which value we want for each edge.8

>> Av = sparse(i, j, edge_rand, size(A,1), size(A,2));

8This step is not required or recommended. We perform this step to be completely concrete about the

intended mapping. In your own code, you should always maintain the mapping implicitly for the highest perfor-

mance.

27

The �rst case we demonstrate is the \obvious" usage, but contains an error. We de�ne an

edge visitor to write out some data on every edge the algorithm examines.

>> ee = @(ei,u,v) fprintf(...

'examine_edge %2i, %1i, %1i, %4f, %4f\n', ...

ei, u, v, edge_rand(trans_ei_to_ei(ei)), Av(u,v));

Also, let's write a quick heading so that we can read and understand the the output before

we call the breadth_first_search algorithm.

>> fprintf(' ei, u, v, er(ei),true er(ei)\n');

>> breadth_first_search(A,1,struct('examine_edge',ee));

ei, u, v, er(ei), A(u,v)

examine_edge 1, 1, 2, 0.950129, 0.606843

examine_edge 2, 1, 5, 0.231139, 0.444703

examine_edge 3, 2, 1, 0.606843, 0.950129

examine_edge 4, 2, 6, 0.485982, 0.615432

examine_edge 10, 5, 1, 0.444703, 0.231139

...

Quickly, we can see that using the edge index itself does not give us the correct mapping

between edges and edge-values. Recall that A(u,v) was the intended value, but all the edge

values are stored with an implicit order in edge_rand.

Note: The edge index cannot be trivially used to index edge values.

In order to make the edge index return the correct value, we must de�ne an edge index map.

In Matlab, this means we need to create a vector with an entry for each edge in the graph such

that the entry indexed by the transposed edge index returns the actual edge index. E�ectively,

we want to undo the transposition that occurs when we use the MatlabBGL library.9 We can

e�ciently construct the map using the following two commands.

>> [i,j,val] = find(A);

>> Aind = sparse(i,j,1:num_edges(A),size(A,1), size(A,2));

>> [i,j,trans_ei_to_ei] = find(Aind');

These lines create a new sparse matrix with the same sparsity pattern as A, but where each

value is replaced by its edge index. To create the edge index map, we simply read out the

transposed matrix into a value array.

With the edge index map in hand, we can correctly code the previous example.

>> ee = @(ei,u,v) fprintf('examine_edge %2i, %1i, %1i, %4f, %4f\n', ...

ei, u, v, edge_rand(trans_ei_to_ei(ei)), Av(u,v));

>> fprintf(' ei, u, v, er(ei),true er(ei)\n');

>> breadth_first_search(A,1,struct('examine_edge',ee));

9If you use the notrans option, then this section may or may not apply to you.

28

ei, u, v, er(ei),true er(ei)

examine_edge 1, 1, 2, 0.202647, 0.202647

examine_edge 2, 1, 5, 0.502813, 0.502813

examine_edge 3, 2, 1, 0.846221, 0.846221

examine_edge 4, 2, 6, 0.709471, 0.709471

examine_edge 10, 5, 1, 0.525152, 0.525152

...

The code now correctly indexes the edge_rand array and gets the correct value for each

edge.

The �rst two examples assumed that each edge (u; v) and (v ; u) have distinct values. Instead,

suppose we have a single value for both (u; v) and (v ; u) and only store half of them. We

need to build a trans_ei_to_ei map that correct handles this case as well. The only change

is that we only deal with the upper triangular part of the matrix instead of the full matrix.

The following code computes an appropriate trans_ei_to_ei to index a new edge_rand

vector that is de�ned for each undirected edge.

>> [i,j,val] = find(triu(A,1));

>> edge_rand = rand(num_edges(A)/2,1);

>> % build a tranposed edge index to edge index map

>> Aind = sparse([i; j],[j; i],[1:num_edges(A)/2 1:num_edges(A)/2], size(A,1), size(A,2));

>> [i,j,trans_ei_to_ei] = find(Aind');

>> ee = @(ei,u,v) fprintf('examine_edge %2i, %1i, %1i, %4f, %4f\n', ...

>> ei, u, v, edge_rand(trans_ei_to_ei(ei)), edge_rand(Aind(u,v)));

>> fprintf(' ei, u, v, er(ei),true er(ei)\n');

>> breadth_first_search(A,1,struct('examine_edge',ee));

ei, u, v, er(ei),true er(ei)

examine_edge 1, 1, 2, 0.150873, 0.150873

examine_edge 2, 1, 5, 0.378373, 0.378373

examine_edge 3, 2, 1, 0.150873, 0.150873

examine_edge 4, 2, 6, 0.860012, 0.860012

examine_edge 10, 5, 1, 0.378373, 0.378373

...

In this output, notice that (1; 2) and (2; 1) both map to the same set of values.

This example is implemented in the �le examples/edge index example.m.

6 Features not implemented

This section contains a list of features that I think should be in MatlabBGL and are currently

missing. If you agree, please send me an email.

� max-
ow intermediate data: Currently, the max-
ow algorithm generates a large amount

29

of intermediate data that could be cached between calls if the underlying graph does

not change.

� support for more algorithms from the Boost Graph Library: I chose not to implement

more algorithms from Boost until there is demand or time allows. The matrix ordering

commands are redundant in Matlab because they are already built in.

� edge labeled graph type: The support for graphs with edge labels is limited. Although

the Matlab sparse matrix type easily supports subgraphs, for a graph with edge labels,

computing a subgraph is more di�cult.

� better graph drawing tools: the gplotwl function in the Matlab File Exchange plots

both weights and labels

7 Reference

7.1 Sample Graphs

This section lists the set of sample graphs provided with MatlabBGL. The table should be

read as clr-26-1.mat is a directed, weighted graph without labels or node coordinates, the

graph came from CLR Figure 26-1. The source CLR is The source KT is Kleinberg and

Tardos, Algorithm Design, 2006.

30

Name Dir. Weighted Labels Coords. Source

clr-24-1 � � � CLR10 Fig. 24.1

clr-25-2 � � � CLR Fig. 25.2

clr-26-1 � � CLR Fig. 26.1

clr-27-1 � � CLR Fig. 27.1

kt-3-2 KT11 Fig. 3.2

kt-3-7 � KT Fig. 3.7

kt-6-23 � � � KT Fig. 6.23

kt-7-2 � � � KT Fig. 7.2

tarjan-biconn � Tarjan12 Fig. 2

padgett-
orentine � � Website13

minnesota � � Highway Data14

tapir � meshpart15

cs-stanford � � Partial webbase 2001 crawl16

7.2 Functions

Searches

bfs

BFS Compute the breadth first search order.

[d dt pred] = bfs(A,u) returns the distance to each vertex (d) and the

discover time (dt) in a breadth first search starting from vertex u.

d(i) = dt(i) = -1 if vertex i is not reachable from vertex u.

pred is the predecessor array. pred(i) = 0 if vertex (i)

is in a component not reachable from u and i != u.

This method works on directed graphs.

The runtime is O(V+E).

... = bfs(A,u,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

There are no additional options for this function.

10Corman, Leiserson, and Rivest. Introduction to Algorithms, 2nd Edition.
11Kleinberg and Tardos. Algorithm Design
12Tarjan. Depth-�rst search and linear graph algorithms, 1972.
13http://mrvar.fdv.uni-lj.si/sola/info4/uvod/part4.pdf
14National Highway Planning Network, 2003.
15Gilbert and Teng, meshpart toolkit.
16Accessed via http://law.dsi.unimi.it/index.php?option=com_include&Itemid=65.

31

Note: this function does not depend upon the non-zero values of A, but

only uses the non-zero structure of A.

Example:

load graphs/bfs_example.mat

d = bfs(A,1)

See also DFS

32

dfs

DFS Compute the depth first search times.

[d dt ft pred] = dfs(A,u) returns the distance (d), the discover (dt) and

finish time (ft) for each vertex in the graph in a depth first search

starting from vertex u.

d = dt(i) = ft(i) = -1 if vertex i is not reachable from u

pred is the predecessor array. pred(i) = 0 if vertex (i)

is in a component not reachable from u and i != u.

... = dfs(A,u,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

options.full: compute the full dfs instead of the dfs of

the current component (see Note 1) [{0} | 1]

Note 1: When computing the full dfs, the vertex u is ignored, vertex 1 is

always used as the starting vertex.

Note: this function does not depend upon the non-zero values of A, but

only uses the non-zero structure of A.

Example:

load graphs/dfs_example.mat

d = dfs(A,1)

See also BFS

33

breadth �rst search

BREADTH_FIRST_SEARCH Fully wrap the Boost breadth_first_search call

including the bfs_visitor.

breadth_first_search(A,u,vis) performs a breadth first traversal

of A starting from vertex u. For each event defined by the bfs_visitor

structure below, the visitor is called with the either the name of the

vertex (u), or the edge index and it's source and target (ei,u,v).

See http://www.boost.org/libs/graph/doc/BFSVisitor.html for a description

of the events.

bfs_visitor is a struct with the following optional fields

vis.initialize_vertex(u)

vis.discover_vertex(u)

vis.examine_vertex(u)

vis.examine_edge(ei,u,v)

vis.tree_edge(ei,u,v)

vis.non_tree_edge(ei,u,v)

vis.gray_target(ei,u,v)

vis.black_target(ei,u,v)

vis.finish_vertex(u)

Each bfs_visitor parameter should be a function pointer, which returns 0

if the bfs should stop. (If the function does not return anything, the

bfs continues.)

This method works on directed graphs.

The runtime is O(V+E), excluding the complexity of the visitor

operations.

Realistically, this function must be used with the

pass-by-reference/in-place modification library.

... = breadth_first_search(A,u,vis,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

There are no additional options for this function.

Note: this function does not depend upon the non-zero values of A, but

only uses the non-zero structure of A.

Example:

This example finds the distance to a single point and stops the search.

function dist_uv(A,u,v,options)

vstar = v;

dmap = ipdouble(zeros(size(A,1),1));

function stop=on_tree_edge(ei,u,v)

dmap[v] = dmap[u]+1;

return (v ~= vstar);

34

end;

breadth_first_search(A,u,struct('tree_edge',@on_tree_edge),options);

end;

See also BFS

35

depth �rst search

DEPTH_FIRST_SEARCH Fully wrap the Boost depth_first_search call

including the dfs_visitor.

depth_first_search(A,u,dfs_visitor) performs a depth first traversal

of A starting from vertex u. For each event defined by the dfs_visitor

structure below, the visitor is called with the either the name of the

vertex (u), or the edge index and it's source and target (ei,u,v).

See http://www.boost.org/libs/graph/doc/DFSVisitor.html for a description

of the events.

dfs_visitor is a struct with the following optional fields

vis.initialize_vertex(u)

vis.start_vertex(u)

vis.discover_vertex(u)

vis.examine_edge(ei,u,v)

vis.tree_edge(ei,u,v)

vis.back_edge(ei,u,v)

vis.forward_or_cross_edge(ei,u,v)

vis.finish_vertex(u)

Each dfs_visitor parameter should be a function pointer, which returns 0

if the dfs should stop. (If the function does not return anything, the

dfs continues.)

This method works on directed graphs.

The runtime is O(V+E), excluding the complexity of the visitor

operations.

Realistically, this function must be used with the

pass-by-reference/in-place modification library.

... = depth_first_search(A,u,vis,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

options.full: compute the full dfs instead of the dfs of

the current component (see Note 1) [{0} | 1]

Note 1: When computing the full dfs, the vertex u is ignored, vertex 1 is

always used as the starting vertex.

Note: this function does not depend upon the non-zero values of A, but

only uses the non-zero structure of A.

Example:

This example finds the distance to a single point and stops the search.

function dist_uv(A,u,v,options)

vstar = v;

dmap = ipdouble(zeros(size(A,1),1));

36

function stop=on_tree_edge(ei,u,v)

dmap[v] = dmap[u]+1;

return (v ~= vstar);

end;

breadth_first_search(A,u,struct('tree_edge',@on_tree_edge),options);

end;

See also DFS

37

Components

components

Simulink components.

slmdldiscui - Launch Simulink Model Discretizer UI

sldiscmdl - Discretize Simulink model block by block

components is both a directory and a function.

COMPONENTS Compute the connected components of a graph.

[ci sizes] = components(A) returns the component index vector (ci) and

the size of each of the connected components (sizes). The number of

connected components is max(components(A)). The algorithm used computes

the strongly connected components of A, which are the connected

components of A if A is undirected (i.e. symmetric).

This method works on directed graphs.

The runtime is O(V+E), the algorithm is just depth first search.

... = components(A,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

There are no additional options for this function.

Note: this function does not depend upon the non-zero values of A, but

only uses the non-zero structure of A.

Example:

load graphs/dfs_example.mat

components(A)

See also DMPERM, BICONNECTED_COMPONENTS

38

biconnected components

BICONNECTED_COMPONENTS Compute the biconnected components and

articulation points for a symmetric graph A.

[a C] = biconnected_components(A) returns a list of articulation points

a and the component graph C where each non-zero indicates the connected

component of the edge. That is, C is a matrix with the same non-zero

structure as A, but with the values replaced with the index of the

biconnected component of that edge. The vector a is a list of

articulation points in the graph. Articulation points are vertices that

belong to more than one biconnected component. Removing an articulation

point disconnects the graph.

If C is not requested, it is not built.

This method works on undirected graphs.

The runtime is O(V+E), the algorithm is just depth first search.

... = biconnected_components(A,optionsu) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

There are no additional options for this function.

Note: the input to this function must be symmetric, so this function

ignores the 'notrans' default option and never transposes the input.

Note: this function does not depend upon the non-zero values of A, but

only uses the non-zero structure of A.

Example:

load graphs/tarjan-biconn.mat

biconnected_components(A)

See also COMPONENTS

39

Shortest Paths

shortest paths

SHORTEST_PATHS Compute the weighted single source shortest path problem.

[d pred] = shortest_paths(A,u) returns the distance (d) and the predecessor

(pred) for each of the vertices along the shortest path from u to every

other vertex in the graph.

... = shortest_paths(A,u,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

options.algname: the algorithm to use

[{'auto'} | 'dijkstra' | 'bellman_ford' | 'dag']

options.inf: the value to use for unreachable vertices

[double > 0 | {Inf}]

options.visitor: a structure with visitor callbacks. This option only

applies to dijkstra or bellman_ford algorithms. See dijkstra_sp or

bellman_ford_sp for details on the visitors.

options.edge_weight: a double array over the vertices with an edge

weight for each node

Note: 'auto' cannot be used with 'nocheck' = 1. The 'auto' algorithm

checks if the graph has negative edges and uses bellman_ford in that

case, otherwise, it uses 'dijkstra'. In the future, it may check if the

graph is a dag and use 'dag'.

Example:

load graphs/clr-25-2.mat

shortest_paths(A,1)

shortest_paths(A,1,struct('algname','bellman_ford'))

See also DIJKSTRA_SP, BELLMAN_FORD_SP, DAG_SP

40

all shortest paths

all_shortest_paths Compute the weighted all pairs shortest path problem.

D = all_shortest_paths(A) returns the distance matrix D for all vertices

where D(i,j) indicates the shortest path distance between vertex i and

vertex j.

... = all_shortest_paths(A,u,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

options.algname:: the algorithm to use

[{'auto'} | 'johnson' | 'floyd_warshall']

options.inf: the value to use for unreachable vertices

[double > 0 | {Inf}]

Note: 'auto' cannot be used with 'nocheck' = 1. The 'auto' algorithms

checks the number of edges in A and if the graph is more than 10% dense,

it uses the Floyd-Warshall algorithm instead of Johnson's algorithm.

Example:

load graphs/clr-26-1.mat

all_shortest_paths(A)

all_shortest_paths(A,struct('algname','johnson'))

See also JOHNSON_ALL_SP, FLOYD_WARSHALL_ALL_SP.

41

dijkstra sp

DIJKSTRA_SP Compute the weighted single source shortest path problem.

Dijkstra's algorithm for the single source shortest path problem only

works on graphs without negative edge weights.

This method works on weighted directed graphs without negative edge

weights.

The runtime is O(V log (V)).

See the shortest_paths function for calling information. This function

just calls shortest_paths(...,struct('algname','dijkstra'));

The options structure can contain a visitor for the Dijkstra algorithm.

See http://www.boost.org/libs/graph/doc/DijkstraVisitor.html for a

description of the events.

visitor is a struct with the following optional fields

vis.initialize_vertex(u)

vis.discover_vertex(u)

vis.examine_vertex(u)

vis.examine_edge(ei,u,v)

vis.edge_relaxed(ei,u,v)

vis.edge_not_relaxed(ei,u,v)

vis.finish_vertex(u)

Each visitor parameter should be a function pointer, which returns 0

if the shortest path search should stop. (If the function does not

return anything, the algorithm continues.)

Example:

load graphs/clr-25-2.mat

dijkstra_sp(A,1)

See also SHORTEST_PATHS, BELLMAN_FORD_SP.

42

bellman ford sp

BELLMAN_FORD_SP Compute the weighted single source shortest path problem.

The Bellman-Ford algorithm for the single source shortest path problem

works on graphs with negative edge weights.

See the shortest_paths function for calling information. This function

just calls shortest_paths(...,struct('algname','bellman_ford'));

This method works on weighted directed graphs with negative edge weights.

The runtime is O(VE).

The options structure can contain a visitor for the Bellman-Ford

algorithm.

See http://www.boost.org/libs/graph/doc/BellmanFordVisitor.html for a

description of the events.

visitor is a struct with the following optional fields

vis.initialize_vertex(u)

vis.examine_edge(ei,u,v)

vis.edge_relaxed(ei,u,v)

vis.edge_not_relaxed(ei,u,v)

vis.edge_minimized(ei,u,v)

vis.edge_not_minimized(ei,u,v)

Each visitor parameter should be a function pointer, which returns 0

if the shortest path search should stop. (If the function does not

return anything, the algorithm continues.)

Example:

load graphs/kt-6-23.mat

d = bellman_ford_sp(A,1);

See also SHORTEST_PATHS, DIJKSTRA_SP.

43

dag sp

DAG_SP Compute the weighted single source shortest path problem.

The DAG shortest path algorithm for the single source shortest path

problem only works on directed acyclic-graphs (DAGs).

If the graph is not a DAG, the results are undefined. In the future, the

function may throw an error if the graph is not a DAG.

See the shortest_paths function for calling information. This function

just calls shortest_paths(...,struct('algname','dag'));

This algorithm works on weighted directed acyclic graphs.

The runtime is O(V+E)

... = clustering_coefficients(A,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

There are no additional options for this function.

Example:

load graphs/kt-3-7.mat

dag_sp(A,1)

See also SHORTEST_PATHS

44

johnson all sp

JOHNSON_ALL_SP Compute the weighted all-pairs shortest path problem.

Johnson's algorithm for the all-pairs shortest path problem

works only on graphs without negative edge weights. This method should

be used over the Floyd-Warshall algorithm for sparse graphs.

This method works on weighted directed graphs.

The runtime is O(VE log(V)).

See the shortest_paths function for calling information. This function

just calls all_shortest_paths(...,struct('algname','johnson'));

Example:

load graphs/clr-26-1.mat

johnson_all_sp(A)

See also ALL_SHORTEST_PATHS, FLOYD_WARSHALL_ALL_SP.

45

oyd warshall all sp

FLOYD_WARSHALL_ALL_SP Compute the weighted all-pairs shortest path problem.

The Floyd-Warshall algorithm for the all-pairs shortest path problem

works only on graphs without negative edge weights. This method should

be used over the Johnson algorithm for dense graphs.

This method works on weighted directed graphs.

The runtime is O(V^3).

See the shortest_paths function for calling information. This function

just calls all_shortest_paths(...,struct('algname','floyd_warshall'));

Example:

load graphs/clr-26-1.mat

floyd_warshall_all_sp(A)

See also ALL_SHORTEST_PATHS, JOHNSON_ALL_SP.

46

astar search

ASTAR_SEARCH Perform a heuristically guided (A*) search on the graph.

[d pred rank]=astar_search(A,s,h,optionsu) returns the distance map,

search tree and f-value of each node in an astar_search.

The search begins at vertex s. The heuristic h guides the search,

h(v) should be small close to a goal and large far from a goal. The

heuristic h can either be a vector with an entry for each vertex in the

graph or a function which maps vertices to values.

This method works on non-negatively weighted directed graphs.

The runtime is O((E+V)log(V)).

... = astar_search(A,u,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

options.visitor: a visitor to use with the A* search (see Note)

options.inf: the value to use for unreachable vertices

[double > 0 | {Inf}]

Note: You can specify a visitor for this algorithm. The visitor has the

following optional functions.

vis.initialize_vertex(u)

vis.discover_vertex(u)

vis.examine_vertex(u)

vis.examine_edge(ei,u,v)

vis.edge_relaxed(ei,u,v)

vis.edge_not_relaxed(ei,u,v)

vis.black_target(ei,u,v)

vis.finish_vertex(u)

Each visitor parameter should be a function pointer, which returns 0

if the search should stop. (If the function does not return anything,

the algorithm continues.)

Example:

load graphs/bgl_cities.mat

goal = 11; % Binghamton

start = 9; % Buffalo

% Use the euclidean distance to the goal as the heuristic

h = @(u) norm(xy(u,:) - xy(goal,:));

% Setup a routine to stop when we find the goal

ev = @(u) (u ~= goal);

[d pred f] = astar_search(A, start, h, ...

struct('visitor', struct('examine_vertex', ev)));

47

Minimum Spanning Trees

mst

MST Compute a minimum spanning tree for an undirected graph A.

There are two ways to call MST.

T = mst(A)

[i j v] = mst(A)

The first call returns the minimum spanning tree T of A.

The second call returns the set of edges in the minimum spanning tree.

The calls are related by

T = sparse(i,j,v,size(A,1), size(A,1));

T = T + T';

The optional algname parameter chooses which algorithm to use to compute

the minium spanning tree. Note that the set of edges returned is not

symmetric and the final graph must be explicitly symmetrized.

This method works on undirected graphs graphs.

... = mst(A,optionsu) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

options.algname: the minimum spanning tree algorithm

['prim' | {'kruskal'}]

Note: the input to this function must be symmetric, so this function

ignores the 'notrans' default option and never transposes the input.

Example:

load graphs/clr-24-1.mat

mst(A)

See also PRIM_MST, KRUSKAL_MST

48

kruskal mst

KRUSKAL_MST Compute a minimum spanning with Kruskal's algorithm.

The Kruskal MST algorithm computes a minimum spanning tree for a graph.

This method works on weighted symmetric graphs.

The runtime is O(E log (E)).

See the mst function for calling information. This function just calls

mst(...,struct('algname','kruskal'));

Example:

load graphs/clr-24-1.mat

kruskal_mst(A)

See also MST, PRIM_MST.

49

prim mst

PRIM_MST Compute a minimum spanning with Kruskal's algorithm.

Prim's MST algorithm computes a minimum spanning tree for a graph.

This method works on weighted symmetric graphs without negative edge

weights.

The runtime is O(E log (V)).

See MST for calling information. This function just calls

mst(...,struct('algname','prim'));

Example:

load graphs/clr-24-1.mat

prim_mst(A)

See also MST, KRUSKAL_MST.

50

Statistics

num edges

NUM_EDGES The number of edges in a graph.

n = num_edges(A) returns the number of edges in graph A.

For symmetric/undirected graphs, the number of edges returned is twice

the number of undirected edges.

Example:

load graphs/dfs_example.mat

n = num_edges(A)

See also NUM_VERTICES

51

num vertices

NUM_VERTICES The number of vertices in a graph.

n = num_vertices(A) returns the number of vertices in graph A.

Example:

A = sparse(ones(5));

n = num_vertices(A);

See also NUM_EDGES

52

clustering coe�cients

CLUSTERING_COEFFICIENTS Compute the clustering coefficients for vertices.

ccfs = clustering_coefficients(A) returns the clustering coefficients for

all vertices in A. The clustering coefficient is the ratio of the number

of edges between a vertex's neighbors to the total possible number of

edges between the vertex's neighbors.

This method works on directed or undirected graphs.

The runtime is O(nd^2) where d is the maximum vertex degree.

... = clustering_coefficients(A,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

There are no additional options for this function.

Note: this function does not depend upon the non-zero values of A, but

only uses the non-zero structure of A.

Example:

load graphs\clique-10.mat

clustering_coefficients(A)

53

betweenness centrality

BETWEENNESS_CENTRALITY Compute the betweenness centrality for vertices.

bc = betweenness_centrality(A) returns the betweenness centrality for

all vertices in A.

[bc,E] = betweenness_centrality(A) returns the betweenness centrality for

all vertices in A along with a sparse matrix with the centrality for each

edge.

This method works on weighted or weighted directed graphs.

For unweighted graphs (options.unweighted=1), the runtime is O(VE).

For weighted graphs, the runtime is O(VE + V(V+E)log(V)).

... = betweenness_centrality(A,options) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

options.unweighted: use the slightly more efficient unweighted

algorithm in the case where all edge-weights are equal [{0} | 1]

options.ec_list: do not form the sparse matrix with edge [{0} | 1]

Note: the edge centrality can also be returned as an edge list using the

options.ec_list options. This option can eliminate some ambiguity in the

output matrix E when the edge centrality of an edge is 0 and Matlab drops

the edge from the sparse matrix.

Note: if the edge centrality matrix E is not requested, then it is not

computed and not returned. This yields a slight savings in computation

time.

Example:

load graphs/padgett-florentine.mat

betweenness_centrality(A)

54

Flow

max
ow

MAX_FLOW Compute the max flow on A from u to v.

flowval=max_flow(A,u,v) computes the maximum flow on the network defined by

the adjacency structure A, with source u and sink v.

[flowval cut R F] = max_flow(A,u,v) returns the maximum flow in the

network A with source u and sink v as well as additional information.

For each vertex on the source side of the mincut, mincut(i) = 1,

for each vertex on the sink side, mincut(i) = -1.

R is the residual graph. R(i,j) is the amount of unused capacity

on edge (i,j). F is the flow graph, F(i,j) is the amount of used

capacity on edge (i,j). F, A, and R satisfy the relationship A = F + R.

The algorithm used is the push-relabel algorithm.

... = max_flow(A,optionsu) sets optional parameters (see

set_matlab_bgl_options) for the standard options.

There are no additional options for this function.

Note: the values on A are interpreted as integers, please round them

yourself to get the best interpretation. The code uses the floor of

the values in A.

Example:

load graphs\max_flow_example.mat

max_flow(A,1,8)

55

Graphs

erdos reyni

ERDOS_REYNI Generates a random Erdos-Reyni (Gnp) graph

A=erdos_reyni(n,p) generates a random Gnp graph with n vertices and where

the probability of each edge is p. The resulting graph is symmetric.

This function is different from the Boost Graph library version, it was

reimplemented natively in Matlab.

Example:

A = erdos_reyni(100,0.05);

56

cycle graph

CYCLE_GRAPH Generate the cycle graph of order n

The cycle graph is a simple cycle with n vertices.

[A xy] = cycle_graph(n) generates a cycle graph with n vertices and

returns the adjacency matrix in A. The matrix xy stores two-dimensional

coordinates for each vertex.

Example:

[A xy] = cycle_graph(10);

gplot(A,xy);

See also WHEEL_GRAPH, STAR_GRAPH

57

star graph

STAR_GRAPH Generate the star graph of order n

The star graph is a simple star with n vertices. Vertex n is the center

vertex.

[A xy] = star_graph(n) generates a star graph with n vertices and

returns the adjacency matrix in A. The matrix xy stores two-dimensional

coordinates for each vertex.

Example:

[A xy] = star_graph(10);

gplot(A,xy);

See also WHEEL_GRAPH, CYCLE_GRAPH

58

wheel graph

WHEEL_GRAPH Construct a wheel graph of order n

The wheel graph is a cycle graph of order n-1 along with an additional

vertex that connects all the remaining vertices. (Run the example and it

will be extremely clear if you are still confused.)

[A xy] = wheel_graph(n) returns the adjacency matrix for the wheel graph

of order n. The matrix xy stores two-dimensional coordinates for each

vertex.

Example:

[A xy] = wheel_graph(10);

gplot(A,xy);

See also CYCLE_GRAPH, STAR_GRAPH

59

Visitors

combine visitors

COMBINE_VISITORS Generate a new visitor by combining existing visitors

cv = combine_visitors(v1, v2, ...) generates a new algorithm visitor that

works by calling the functions in v1 followed by the functions in v2, and

so on.

The value returned by the combined visitor function is the bitwise & of

all the individual return values. So, if any visitor requests the

algorithm to halt, then the algorithm will halt.

Note: using a combined visitor is somewhat slower than writing a custom

combined visitor yourself.

Example:

vis1 = struct();

vis1.examine_vertex = @(u) fprintf('vis1: examine_vertex(%i)\n', u);

vis2 = struct();

vis2.examine_vertex = @(u) fprintf('vis2: examine_vertex(%i)\n', u);

combined_vis = combine_visitors(vis1, vis2);

load graphs/bfs_example.mat

breadth_first_search(A,1,combined_vis);

60

Options

set matlab bgl default

SET_MATLAB_BGL_DEFAULT Sets a default option for the Matlab BGL interface

old_default = set_matlab_bgl_default(options)

options.istrans: the input matrices are already transposed [{0} | 1]

options.nocheck: skip the input checking [{0} | 1]

options.full2sparse: convert full matrices to sparse [{0} | 1]

to get the current set of default options, call

options = set_matlab_bgl_default()

These options can make the Matlab BGL interface more efficient by

eliminating the copying operations that occur between Matlab's structures

and the BGL structures. However, they are more difficult to use and are

disabled by default.

Generally, they are best used when you want to perform a large series of

computations.

e.g.

% tranpose the matrix initially...

At = A'

old_options = set_matlab_bgl_default(struct('istrans',1));

% perform a bunch of graph work with At...

d1 = dfs(At,1); d2 = dfs(At,2); ...

% restore the old options

set_matlab_bgl_default(old_options);

61

